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Abstract

In a time when the alarms of research replicability are sounding louder than ever, mapping out studies with
statistical and inferential integrity is of paramount importance. Indeed, funding agencies almost always
require grant applicants to present compelling a priori power analyses to justify proposed sample sizes,
as a critical part of the information considered collectively to ensure a sound investment. Unfortunately,
even researchers’ most sincere attempts at sample size planning are fraught with the fundamental challenge
of setting numerical values not just for the focal parameters for which statistical tests are planned, but for
each of the model’s other, more peripheral or contextual parameters as well. As we plainly demonstrate,
regarding the latter parameters, even in very simple models, any slight deviation in well-intentioned numer-
ical guesses can undermine power for the assessment of the more focal parameters that are of key theoretical
interest. Toward remedying this all-too-common but seemingly underestimated problem in power analysis,
we adopt a hope-for-the-best-but-plan-for-the-worst mindset and present new methods that attempt to (a)
restore appropriate conservatism and robustness, and in turn credibility, to the sample size planning process,
and (b) greatly simplify that process. Derivations and suggestions for practice are presented using the frame-

5 work of measured variable path analysis models as they subsume many of the types of models (e.g., multiple
42 linear regression, analysis of variance) for which sample size planning is of interest.
";j Translational Abstract
E g Among the many critical decisions when planning a study is the number of subjects to be sampled. From a
S £ statistical perspective the basis for such a decision is to achieve adequate power, that is, to gather enough data
£ 3 to have an acceptably high probability of detecting the variable effects or relations of primary theoretical
g g interest. A key challenge in doing so, however, is accurately anticipating the context in which those exist.
i = Focal variables’ relations with covariates, for example, while not necessarily of keen interest, if set inaccu-
é § rately can result in a study with inadequate sample size, and in turn little power to detect those effects or
R relations that are of interest. And yet it is virtually impossible to have sufficiently pertinent prior information
;, £ with which to foretell that context, leaving researchers to fill gaps in their knowledge with little more than
:5 B wishful thinking. The current work seeks to address this long-standing challenge, proposing an insurance
£ - policy of sorts in which contextual relations are numerically consolidated and then set conservatively,
g3 thereby helping researchers to plan for sample sizes that are robust to unanticipated and unfavorable contex-
::2“ 2 tual conditions, and ensuring statistical power to detect the focal effects and relations of theoretical
23 importance.
= 2
g Keywords: power analysis, sample size planning, measured variable path analysis, structural equation
; _: modeling, multiple linear regression
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Power analysis has lost its way. To be specific, we are not speaking
of the post hoc variety whereby statistical tests already conducted
(and which usually failed to yield statistical significance) are used

to estimate their own (inadequate) statistical power. Such a “post-
mortem examination” as Fisher (1938) famously referred to it, and
many others have since echoed (e.g., Hoenig & Heisey, 2001;
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2 HANCOCK AND FENG

Maxwell, 2004; Yuan & Maxwell, 2005), is well known to be
fraught with problems, not the least of which is quite simply that
the study is over—the patient has already died. Rather, here we
use the term power analysis in reference to its more useful a priori
form, also known as sample size planning, in which a researcher
attempts to estimate ahead of the study what sample size should
be adequate in order to have some desired level of power for the stat-
istical tests aimed at addressing the research questions of key theo-
retical interest. It is this a priori power analysis, this sample size
planning, that we believe has lost its way.

In making this as-yet unjustified statement, we in no way wish to
diminish the decades of methodological work that have extended the
process of sample size planning to models and analyses of increasing
complexity (see, e.g., Chattopadhyay et al., 2025; Donnelly et al.,
2023; Feng & Hancock, 2021, 2023; Hancock, 2001; Hedges &
Pigott, 2001, 2004; Mathieu et al., 2012; Moerbeek, 2022;
Thoemmes et al., 2010; Tu et al., 2004; Wolf et al., 2013; Zhang,
2014) and that have attempted to make that process more accessible
to applied researchers through dedicated software (e.g., G*Power,
Faul et al., 2007; semPower, Moshagen & Bader, 2024; for a more
comprehensive list see Feng & Hancock, 2023). All of this work is crit-
ically important methodologically and practically, and we hope it con-
tinues to flourish and reach the widest audience possible.

In order to understand our concern with power analysis, let us start
by turning the clock back, say, 40 years, to a time when being versed
in power analysis meant that one was armed with a well-worn copy
of Cohen’s classic treatise (e.g., the 1977 revised edition or the 1988
second edition). If you wished to conduct sample size planning for
an independent samples ¢ test, a % test of independence, or a host of
other statistical tests with no broader variable-related or data-related
context (e.g., covariates, complex samples), all you had to do was
choose your test’s intended Type I error rate (e.g., oo =.05), the
desired level of power (e.g., ®=.80), and the target effect size
(e.g., Cohen’s d =0.20), and then turn to the appropriate table to
reveal the necessary n (under standard distributional assumptions).
And this was important not just statistically, but ideologically: it
embodied the beliefs that science worth doing is worth planning
for carefully, and that sample size is an investment—an insurance
policy, so to speak—to guard against a potentially wasteful research
endeavor. But alas, as foundational and grounding as this work was,
when you step off the bus today clutching your copy of Cohen and
gaze wide-eyed at the statistical skyscrapers all around you, it is clear
that life is no longer so simple.

Consider as a generic starting example a fairly typical multiple lin-
ear regression model with a continuous outcome Y and four contin-
uous predictors, where X is a predictor whose partial slope with Y is
of focal research interest, and the remaining three predictors/
covariates C;, C», and Cs are control variables that set the context
for addressing the primary research question (e.g., demographics
such as family income and parents’ education level).! Expressed
in standardized form for simplicity, the linear model is ¥ =X +
B1C1 + B2Cs + B3Cs + €, where for this example the parameter for
which sample size planning is desired is y. After setting the intended
o level for the statistical test of y (e.g., .05), as well as the target
power level &t (e.g., .80), the task turns to the variable relations.

The relation of primary importance, that for which the study
wishes to have sufficient power, is y. Let us assume that the
researcher, by whatever process, believes the standardized value
v=.20 to represent the smallest effect size of interest (SESOI;

Lakens, 2022; Lakens et al., 2018; also referred to as the critical
effect size by Kraemer & Blasey, 2015, p. 11).? Given this informa-
tion, along with the chosen levels for o and m, one cannot merely
consult a table or, more modernly, insert those values into a software
application to get the necessary sample size. This is because that
sample size also depends on (a) the relations among the C variables
(P21, P31, and p3»), (b) the relations that the C variables have with X
(p1x> P2x»> and p3x), and (c) the partial slopes relating the C variables
to the outcome Y above and beyond X (B, B,, and B3). And here is
where things become more tenuous (as any statistical consultant
who has tried to guide an applied researcher through this process
will attest). In this example, there are nine (standardized) parameters
that are peripheral to the researcher’s theoretical interest, and thus for
which power is not of primary concern, but that are in fact essential
context for determining the sample size needed to test the parameter
that is focal, y. And realistically speaking, knowing the precise pop-
ulation values for all nine of these contextual parameters a priori is
simply incredibly unlikely (as we will expand upon further later).®
So, what do researchers do then for these contextual parameters?
They make guesses—thoughtful, educated guesses we hope, but
guesses nonetheless. If, for example,4 a researcher were to choose
P21 =p31 =pP32="35, pix=pPax=psx=.30, and B; =P, =P3=
.25, employing one of the approaches reviewed in the next section
yields an estimated necessary sample size of n = 134 for a maximum
likelihood (ML) based test of the SESOI y = .20 (assuming o. = .05
and n = .80). Of course, the precision of the sample size estimate is
only as good as the assumptions upon which it rests, including, but
not limited to, the accuracy of the values of the contextual parameters.
If accurate (and if all other assumptions hold), this n is exactly the
insurance policy needed to address the research question addressed
by v. If inaccurate, however, the resulting power would likely deviate
from the target level &, possibly substantially so. On the one hand,
under such circumstances, this # could possibly yield more power
than planned, thus still serving as an effective insurance policy for
testing the focal research question. Alternatively, and much more wor-
risome for our purposes, inaccurate guesses about the contextual
parameters could yield less power when testing y. We simply do
not know, because we do not know the state of the population (indeed,
if we did, the research would be unnecessary). Even the most educated
guesses about parameters, focal or in this case contextual, can be mis-
informed due to publication bias, sampling variability, model (mis)

! A researcher could have theoretical interest in the partial slopes of more
than one predictor of Y within a given model; for this motivating example we
will focus on just one predictor.

2 That is to say, and we emphasize here, that we are not asking here or any-
where in this article that the researcher approximate what is believed to be the
“true” effect size, which for countless reasons can be misinformed and, espe-
cially problematically for planning purposes, upwardly biased. Rather, we are
asking the researcher to set the smallest justifiable value having practical
meaning for their constituent communities and being worthy of investigation.

3 If there are multiple focal parameters in a model, as is common, sample
size planning should be conducted for each focal parameter. In such cases, a
specific parameter will be focal in one analysis but contextual in another.
Consequently, as will be addressed and illustrated in this article, when serv-
ing focally a parameter’s worst-case scenario will be governed by its SESOI;
when shifting to a contextual role that parameter’s uncertainty, particularly in
a problematic direction for planning purposes, must be accounted for.

4 Values were chosen to be equal merely for the simplicity of this example;
researchers would be free to choose values differing within and across subsets
(as long as their implied correlation matrix was positive definite [PD]).
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specification, and so forth (see, e.g., Anderson et al., 2017; McShane
& Bockenholt, 2016; Pek & Park, 2019; Pek et al., 2024; Perugini
et al., 2014). Furthermore, the sample size of n = 134 might be an
unexpectedly costly pill for the researcher to swallow, provoking ini-
tial responses such as: “Are you sure?”, “Do you have any idea how
hard it is to get subjects from this population?!”, and “We absolutely
cannot afford to get that many.” But this reaction is typically short-
lived, quickly giving way to negotiation, or the so-called “sample
size samba” (Schulz & Grimes, 2005): “Well, what if we make that
correlation a little smaller?”, “Can we make that B a bit bigger?”,
“Let’s take out that third control variable and see what happens.”,
and so on.

Now, to be clear, we absolutely believe that power analysis can be a
place for principled exploration (e.g., Judd et al., 2017). It should be a
process in which one evaluates the consequences of different values
for contextual parameters (e.g., Cole et al.,, 2025), rather than a
quest for some single sacred n to be revealed. In our view, however,
such exploration should be for the purpose of probing concerning sce-
narios against which to be insured, not prospecting for a less expen-
sive n and then cobbling together a story to convince oneself (and
grant reviewers) that this has been some contextual truth all along.
This latter, and in our experience extremely common, variation of
the sample size samba is completely at odds with the original spirit
of power analysis. What was intended to be an honest, planful insur-
ance policy for our scientific endeavors has essentially devolved into a
statistical yard sale, haggling to slink away as cheaply as possible. It is
for this reason that we believe power analysis has lost its way.

The work we present here aims to confront this problematic mind-
set and the practices it precipitates, offering new approaches in the
quest to (a) restore appropriate conservatism and robustness, and
in turn credibility, to the sample size planning process, and (b)
greatly simplify that process by reducing the amount of speculation
required of the researcher. We provide derivations, illustrative simu-
lations, and suggestions for practice that have broad applications to
multiple linear regression and the larger analytic framework of mea-
sured variable path analysis, of which many methods are special
cases. A discussion of the benefits, limitations, and opportunities
for further extensions then follows.

Power for the Most Basic (Two-Predictor) Multiple
Linear Regression Model

We will start with the most basic multiple linear regression model,
a simplified version of the one presented above, having a continuous
outcome Y, one continuous focal predictor X, and only one continu-
ous contextual covariate C.” This scenario is certainly of practical
utility in its own right, but even more importantly, will serve as
the basis for larger models discussed at length in subsequent sections
of this article. Again, we will express the model in standardized
form: Y=vyX+ BC + ¢, where the parameter for which sample
size planning is desired is y. After setting the intended o level for
the test of y (e.g., .05), as well as the target power = (e.g., .80), the
researcher must choose the SESOI for the focal parameter y: we
will select the standardized value y = .30 for this example. As for
the contextual parameters, there are two in this scenario: (a) the rela-
tion between C and X, which for this example we will assume the
researcher has selected as p = .20, and (b) the partial slope relating
C variable to ¥, which we will assume the researcher had a strong
rationale for setting to f=.40 (and which we will address more

broadly later). These values lead to a model-implied correlation
matrix (e.g., through path tracing; Wright, 1934) for X, C, and Y,
respectively, of:

1 .20 .38
20 1 46 . (1
38 46 1

In order to assess the sample size needed for the current circum-
stance, several well-known and well-understood asymptotically
equivalent approaches exist within the structural equation modeling
(SEM) literature. One popular method is simulation-based (Muthén
& Muthén, 2002), in which a large number of random samples are
drawn from the population as specified (in our example, from a stan-
dardized population with the above correlation matrix), fitting the
model (using ML) each time. Sample size is then adjusted iteratively
until the proportion of a-level focal parameter tests achieving statis-
tical significance is at least 7.

In addition to the simulation strategy, there are two population anal-
ysis methods we will mention here (see, e.g., Feng & Hancock, 2023;
Hancock & French, 2013). In the first, which is based on the focal
parameter’s Wald test (i.e., its squared z value), the model is fitted
directly to the population moments implied by the chosen parameter
values (using ML), assuming an arbitrary value of n to start. Sample
size is then adjusted until the z value (i.e., the square root of the Wald
statistic) for the focal parameter test is as close as possible to, but no
smaller than, the noncentrality parameter A, for a noncentral normal
distribution corresponding to power © for o-level z tests (e.g., for
n=.80and o = .05, A, ~ 2.802 to three decimals). In the second pop-
ulation analysis method, which utilizes the model-level likelihood
ratio (LR) test, the model is fitted (using ML) to the population
moments implied by the chosen parameter values, assuming an arbi-
trary (and typically large) value of  to start, but constraining the focal
parameter y to 0. The resulting degree of misfit associated solely with
the focal parameter’s absence is reflected in the value of the ML fit
function, Fyy, which is known (see, e.g., Satorra & Saris, 1985) to
convert to a 1 df x> noncentrality parameter as:

}»:(n— l)FML. (2)

Noncentrality parameters necessary to achieve power &t for a-level 1 df
x* tests may be looked up (e.g., Johnson et al., 1995) or computed
(e.g., using the chi2ncp function in the gtx R package; Johnson,
2020); for oo = .05 and © = .80 the value to three decimal places is
L~ 7.849.° Substituting this target noncentrality parameter and

5 As alluded to previously, the researcher could also view both predictors
as focal, with neither as covariate per se. However, as we are interested in the
power associated with testing each individual focal predictor’s partial slope,
each predictor in turn may be viewed as the other predictor’s pro tem covar-
iate. Furthermore, the predictor and/or the covariate could be dichotomous, as
in group coding; for our purposes, without loss of generality, we will assume
they are continuous (and standardized) for ease of presentation and
interpretability.

SWith o= .05, ©=.80, and df=1, the chi2ncp function yields A =
7.848861. This six-decimal value will be used in all calculations in this arti-
cle. Furthermore, it may be noted that a 1 df x” test is equivalent to the square
of a z test; as such, the noncentrality parameter for the former is the square of
the noncentrality parameter for the latter (e.g., 7.848861 =2.8015827 for
o =.05 and &t = .80).
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rearranging the formula for n yields:
n=M/FuL)+ 1 =(7.849/Fu) + 1. 3)

Following this second population analysis approach and constraining
¥ = 0 in the above example, the resulting fit function” is Fyy = 0.116.
Substituting this value into Equation 3 yields n = (7.849/0.116) +
1 = 68.66, which, when rounded up to ensure sufficient power, sug-
gests an estimated sample size of n =69 to achieve © = .80 power
for detecting y = .30 using an o = .05 level test, given standard distri-
butional assumptions and contextual parameters of p=.20 and
B =.40.

Although it may seem fairly straightforward to get to the sample
size of n = 69 in this simple example, doing so brings up two reason-
able questions: (a) how likely is it that researchers get the contextual
parameters correct (p and B), and (b) how much does it matter if they
donot? On the first issue, we would argue that the chances are almost
always essentially zero. For the researcher who cites past research in
choosing their numerical values, we ask (rather rhetorically, and
possibly annoyingly) the following questions:

* Did the prior work draw from the exact same population as
the planned study?

* Was the same model estimated, for example, with the same
other variables (focal and contextual)?

* Were the same scales/measures used, and did they have com-
parable reliability and thus the same expected relations as in
the planned study?

e If the prior contextual parameter values were based on the
researcher’s own preliminary pilot work rather than pub-
lished studies, how far off could the estimates be given the
typically much smaller pilot sample size (and hence much
larger standard errors)?

As telegraphed above, it is extremely unlikely that any of these ques-
tions could be answered satisfactorily, a reality that is prominent in the
ongoing replication crisis. Indeed, even when a planned study per-
fectly replicates previous published studies in terms of the target pop-
ulation, sampling method, measurement properties, analytical model,
and estimation approach, other sources of uncertainty still likely bias a
priori model parameter estimates. For instance, publication bias,
inherent sampling variability in point estimates, model misspecifica-
tion, and assumption violations have been discussed extensively by,
for example, Anderson et al. (2017), Pek and Park (2019), and
Perugini et al. (2014). Perhaps even more fundamentally problematic
for our purposes is that, particularly in complex models, estimates of
contextual parameters are commonly deemed background noise rela-
tive to the focal parameters constituting the main storyline, and thus
are often omitted from research reports; as such subsequent research-
ers simply lack the necessary information with which to educate their
guesses. All of this is to say that, however well intentioned the contex-
tual parameter guesses may be, there are simply too many sources of
mismatch between prior work and the planned study to completely
trust those parameter values, and this issue only compounds as the
model becomes increasingly complex.

This then leads to our second question: If researchers likely do not
have accurate prior knowledge about the contextual parameters, how
much does it matter when it comes to the test of the focal parameter
v? As an initial foray into thinking about this question, we repeat the
prior sample size estimation with the standardized SESOI y = .30

Table 1
Required Sample Size to Detect y = .20
B
p —.6 -4 -2 0 2 4 .6
-6 51 88 114 129 134 127 110
-4 48 73 91 100 101 94 78
-2 49 69 82 88 87 78 62
0 53 71 82 85 82 71 53
2 62 78 87 88 82 69 49
4 78 94 101 100 91 73 48
6 110 127 134 129 114 88 51

Note. The bold value represents the true sample size needed under the
assumed conditions. The gray square represents sample sizes when one or
both of the contextual parameters are off by +.20.

but manipulating the (standardized) values of the contextual param-
eters p and B both from —.60 to +.60 in increments of .20. Table 1
shows the estimated sample size for an o= .05 level test of y to
have © = .80 power (under assumed distributional conditions). At
the intersection of the assumed targets of p =.20 and = .40, we
see the previously reported n =69 in bold. Now, imagine that
while planning for these specific values, the true contextual para-
meters could be off from those assumed values by a seemingly
negligible +.20; this is represented in Table 1 by a light gray square
circumscribed around the assumed n = 69. If B = .40 had been cor-
rect, we see that being off in p by +.20 (i.e., p = 0 or p = .40) would
require a larger sample size (as indicated by the two gray cells above
and below 69), albeit only by 4 or fewer subjects (i.e., n = 69 would
technically lead to an underpowered study, but not severely). If f had
been incorrect and its true value was actually higher by +.20 (i.e.,
B =.60), the planned sample size of n = 69 would be more subjects
than actually needed for values of p within +.20 of the assumed
p =.20 (as indicated by the three gray cells to the right of 69),
thus safely providing power in excess of the target level (i.e.,
1> .80). On the other hand, if B had been incorrect and its true
value was actually off by —.20 (i.e., p =.20), the planned sample
size of n = 69 could fall well short of the needed sample sizes for val-
ues of p within +.20 of the assumed p = .20 (as indicated by the three
gray cells to the left of 69). With B = .20 and p = .40, for example, the
required sample size would be estimated to be n =91 (i.e., 22 more
subjects than the assumed n = 69). And that is not even close to the
worst case shown in the table. In the values displayed, we see that
when B = —.20 and p = .60, the required sample size would be esti-
mated to be n= 134, which is almost twice the assumed n =69
based on the incorrect contextual parameter values of p=.20 and
B=.40. As a result, using n =69 under such conditions would
yield power estimated (by the simulation method mentioned above)
to be only .54 to detect the focal y=.30 (with an a=.05 level
test). One can hardly imagine investing valuable time and resources
into a study with barely better than a coin flip’s chance of success.
Thus, given that the contextual parameters can be difficult (if not
impossible, as argued above) to determine a priori with precision,
and that the imprecision in contextual parameters can lead to a
severely underpowered study that can thwart even the relatively

7 We used Mplus 8.9 (Muthén & Muthén, 1998-2023).
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simple two-predictor multiple linear regression case, we can carry
this further and ask a very practical question: Is there a sample
size that would guarantee a minimum of © power for an a-level
test of y? Such information would be valuable for understanding
the worst-case scenario, or framed more proactively, for estimating
the cost of the safest insurance policy. Fortunately, this is a question
that can be answered analytically.

As detailed in Appendix A, given a fixed focal parameter y, we
can mathematically derive the contextual conditions under which
the statistical power is minimized for testing its estimate, and more
importantly, the corresponding theoretical lower bound of Fyy.
Doing so in turn allows us to determine the largest necessary sample
size, nmax, that is required to detect (with target power m) the noncen-
trality introduced by constraining the focal parameter vy to 0. This
nmax Will thus serve as the insurance policy that can cover us even
under the least favorable contextual conditions. As shown in
Appendix A, this worst-case scenario for testing a given y occurs
as Ipl - 1 and B = —vp, yielding a fit function Fy_ of:

1
Fyp=ln———. 4
ML nl—y2(1—p2) G}
Recalling from Equation 1 that the 1 df x> noncentrality parameter A
when setting focal parameter y to 0 is A = (n — 1)Fy, we may sub-
stitute the expression for Fyy, from Equation 4 into Equation 1,
yielding:

1

Equation 5 may, in turn, be rearranged to solve for n,,, as:

&)

A
e = = = o]

1. (6)

This implies that, under standard assumed conditions of conditional
multivariate normality and independence of observations, for a
given level of collinearity p (where Ipl < 1) the sample size 7y
ensures power of at least m all the way to the conditional pessimum,
that is, to the least favorable contextual conditions for that focal y and
the contextual p (and which do not likely correspond precisely to the
select conditions shown in Table 1).

Although not technically necessary, we can use a table displaying
nmax Values for select levels of y and a range of discrete Ipl values to
facilitate a more intuitive understanding of how these aspects are
interrelated. Imagine, for example, that a researcher considers
v = .30 to be the smallest effect worth detecting for X, and that the
collinearity of X with covariate C would not be expected to exceed
Ipl =.70. Table 2, which draws directly from Equation 6, shows a
corresponding value of n,,x = 169. That is, under standard assumed
conditions, a sample size of n = 169 would be expected to yield at
least 1= .80 power to detect y=.30 with an o=.05 level test
(under assumed distributional conditions), as long as collinearity
did not exceed Ipl =.70. Thus, the researcher was not required to
specify exact values for p and B, but rather allowed 7., essentially
to “plan for the worst” in order to ensure power coverage under all
conditions deemed reasonably possible, even if unlikely.

Now at this point, for the two-predictor case addressed here one
might argue (a) that the method above offers only a slight simplifi-
cation to the previous sample size planning processes, given that it
still requires a researcher-supplied upper threshold of p, and (b)

that the absolution of responsibility over the now hard-wired and
maximally pessimistic B likely brings with it the cost of increased
sample size. To the first point we agree: we cannot, and perhaps
should not, fully relieve the researcher of responsibility for the col-
linearity decision. However, we prefer to think of it differently:
rather than the common “taking an educated guess” framing, we
see this as the researcher choosing to adopt a conservative mindset
and taking responsibility for setting a realistic upper limit on the
degree of expected collinearity (an issue we will return to later in
the article). And in response to the second point about cost, indeed
uncertainty about contextual relations has a price; however, as part of
the quest to restore the integrity of power analysis as an insurance
policy against just such uncertainty, we believe that planning for
the worst while hoping for the best is a reasonable governing ideol-
ogy when faced with the pervasive tenuousness of a priori contextual
parameter value selection. We will return to this point with further
discussion at the end of the article.

Power for Multiple Linear Regression Models With More
Than Two Predictors

As we will see in this section, the previous two-predictor deriva-
tion has highly useful applicability when generalized to models that
increase in complexity. To start, we can extend this simplified power
analysis process to a general linear model with any number of pre-
dictors. For our purposes, let us again think of one predictor X as
focal and p covariates C; through C, as contextual. Earlier, we
described a standardized example with a focal predictor X plus
p =3 covariates, yielding a standardized focal slope parameter y
for X plus nine standardized contextual parameters: three correla-
tions among the covariates, three correlations of X with the covari-
ates, and three partial slopes relating the covariates to the outcome
Y. More generally for p covariates, staying in the standardized
realm for simplicity we would expect a total of p(p + 3)/2 contextual
parameters: p(p — 1)/2 correlations among the covariates, p correla-
tions of X with the covariates, and p partial slopes relating the covar-
iates to the outcome Y. This means that in a model with, say,p + 1 =
6 exogenous variables in total (one focal X variable plus five C
covariates), treating any of the variables as focal with partial slope
parameter y would have p(p + 3)/2 =5(5 + 3)/2 =20 contextual
parameters. As argued previously in the case of p + 1 =2 exoge-
nous variables (i.e., the simplest possible multiple linear regression
model), it is already infeasible to provide accurate guesses about
such contextual parameter values. Of course, the challenge only
grows as more contextual predictors are introduced, and the conse-
quences for failing to provide accurate population values can be con-
siderable in terms of sample size planning and power.

Fortunately, the principles and methods developed in the previous
section for multiple linear regression models with one predictor and
p =1 covariate can be applied to scenarios with any number p of
covariates. The reason stems from what we refer to here as collaps-
ibility, that is, that the p covariates themselves can be thought of as
being collapsed into, and ultimately represented by, a single com-
posite covariate. To elaborate, within the familiar unstandardized
multiple linear regression expression Y =>5by+ gX+ b,C, + -+ +
b,C, + e, the p covariates could be thought of as forming a linear
composite, which we will label C., that is separate from the focal
predictor X (i.e., C.=b,C; + - + b,C,, and thus Y = by + gX +
C.+ e). The covariance structure of this traditional model may be
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Table 2
Numax Values as a Function of |y| and |p|, for an o= .05 Level Test to Ensure & = .80 Power
Ipl
W Ipl<0.9 Ipl<08 Ipl<0.7 Ipl<06 Ipl<0.5 Ipl<04 Ipl<03 Ipl<0.2 lpl<0.1 p=0
0.1 4,129 2,178 1,537 1,224 1,044 932 860 815 790 783
0.2 1,030 543 382 304 259 231 213 202 196 194
0.3 457 240 169 134 114 101 93 88 86 85
0.4 256 134 94 74 63 56 51 49 47 47
0.5 163 85 59 47 39 35 32 30 29 29
0.6 112 58 40 31 26 23 21 20 19 19
0.7 82 42 29 22 19 16 15 14 13 13
0.8 62 31 21 16 14 12 10 10 9 9
0.9 48 24 16 12 10 8 7 7 6 6

expressed within an unstandardized path analytic framework, as
seen on the left in Figure 1, with a technically unnecessary but none-
theless illustrative hexagon-enclosed composite C. represented as
an endogenous phantom factor.® This model is equivalent in all
respects to the original model without the extraneous C., most
importantly with regard to power and sample size associated with
all focal and contextual parameters.

Now consider the model on the right, represented in standardized
form, depicting the composite covariate C. and the focal predictor X.
In this model, C. need not literally be computed externally from the
original p covariates, but rather stands symbolically as a proxy for all
relevant contextual information contained in C; through C,. Here,
the parameter pc is the Pearson correlation between X and C.,
while B¢ is the standardized partial slope relating the composite C.
to the outcome Y above and beyond X.” These parameters are herein
referred to as contextual metaparameters (specifically, the metacol-
linearity parameter pc and the metaslope parameter f¢). Also worth
noting is that, while p¢ represents a multivariate relation between X
and the covariates C, through C,,, it is not the same as their popula-
tion multiple correlation Py ; . ,. In fact, because the latter is the
Pearson correlation between X and a composite of C; through C,
optimized to predict X, whereas C. is a composite of C; through
C,, optimized to predict Y (above and beyond X), the magnitude of
the metacollinearity cannot exceed that of the multiple correlation:

Q)

|pC| = PX.I o pe

We will return to this point later.

Figure 1
Multiple Linear Regression Model With Covariate Composite

Unstandardized population model, with Standardized population model, with
and i predictor and conceptual covariate composite

To reiterate the issue above, the collapsed model is not intended to
be an analytical model per se; rather, it will serve as a vehicle for
sample size planning with respect to the standardized focal parame-
ter y. As derived in Appendix B, with ML estimation, the LR test of
the focal parameter y in the original (uncollapsed) model with covar-
iates C; through C,, is strictly equivalent to that within the collapsed
model with C. as the proxy covariate. The important and unique
implication of this equivalence is this: if we wish to conduct sample
size planning for testing the focal parameter y using the methods
developed here, we only need values for the two contextual meta-
parameters (pc and B) rather than for the p(p + 3)/2 (standardized)
contextual parameters in the uncollapsed model. In fact, as follows
from the two-predictor case, the latter B¢ will likewise automatically
assume its conditional pessimum value, and as such will not require
setting by the researcher. Thus, our contextual attention will be
focused on the metacollinearity pc.

Of course, as we should well expect by now, any misspecification
in the contextual parameters, including in this meta form, can poten-
tially lead to severely underpowered designs. Fortunately, given the
equivalence of the collapsed form with respect to testing y, simpli-
fied sample size planning for a general linear regression model can
be obtained directly from the prior derivation as a relabeled version
of the previous Equation 6 for the collapsed model:

A
1
Ty

®)

Nmax =

Procedurally, this means that for testing the standardized parameter y
in the presence of p covariates (using an o-level test with target
power ), the researcher (a) chooses the value for the SESOI y and
(b) sets a cautiously conservative threshold for the metacollinearity
parameter pc (while the value of B¢ automatically assumes its con-
ditional pessimum given vy and pc).

From a practical standpoint, setting pc may precipitate discomfort
given that, instead of being the simple correlation between X and a sin-
gle contextual covariate C, it is actually the Pearson correlation
between X and the composite C. of the p contextual covariates C;
through C,, that has been optimized to predict Y. Note again that we

8 Although not shown in Figure 1, this would be parameterized in an
unstandardized model with zero disturbance variance for C. and a path
from C. to Y set to 1.

° Although we have no computational need for doing so here, both p¢ and
Bc can be derived algebraically or using standard path tracing rules.
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are not, however, asking the researcher to make an educated guess as
to the value of this more complex metaparameter; rather, as before, we
are asking the researcher to set a cautiously conservative threshold
(i.e., an upper limit) that one would not likely exceed. Still, unlike
the two-variable case in which one needed merely to think in terms
of a simple correlation between X and a single covariate C, the
involvement of the composite C. may now be leading us beyond
the realm of reasonable intuition. Fortunately, to help ground us, recall
that Equation 7 stated that the magnitude of the metacollinearity pc is
bounded by the multicollinearity between X and covariates C through
C,, Px1 ... p. This means that, although adding another layer of conser-
vatism, setting an upper bound for the latter may be a useful practical
guide to setting an upper bound for the former.

Continuing from the above, then, we could ask the following con-
servative but practical question: if X were to be predicted by the
covariates C; through C,, what is the largest proportion of explained
variance that the researcher could reasonably expect to see in reality
for these specific variables (i.e., that the researcher would be
extremely surprised if exceeded)? The square root of this proportion
is Pxy ... », which could be used as a conservative value to which to
set the metacollinearity pc. So, for example, for a researcher inter-
ested in predicting sixth-grade math achievement scores (Y) from
fifth-grade math achievement scores (X), while controlling for
p =15 socioeconomic status (SES) measures (e.g., C; through Cs
include total family income, mother’s educational level, father’s
educational level, mother’s occupational prestige, and father’s occu-
pational prestige), we believe that researchers should be able to
formulate and defend a statement of the sort, “We would expect fifth-
grade math achievement scores to have a multiple correlation with
the collection of SES measures no higher than .60.” Once such a justi-
fiable (and again, cautiously conservative) statement is made, sample
size planning immediately becomes straightforward, and familiar.

For example, imagine that the above researcher decided that the
standardized SESOl is y = .30 (again, assuming this is a sufficiently
conservative and reasonably justified value, and that this is a mean-
ingful practical effect size that is worth investigation; see more
details in the Discussion section), and that the worst-case metacolli-
nearity is pc = .60 (i.e., as informed by the multiple correlation per
the sample statement above). For an oo = .05 level test to achieve a
minimum of ©=.80 power (which has noncentrality parameter
A~ 7.849), under standard assumptions of conditional multivariate
normality and independence of observations, it follows from
Equation 8 that ny, =134 (technically, 133.30 rounded up).
Thus, a sample size of 134 would yield at least T = .80 power to
detect y = .30 using an oo = .05 level test, as long as metacollinearity
does not exceed Ipcl = .60. And in practice, given that this process
assumes a worst-case scenario for pc, and that ¢ is at a correspond-
ing pessimum, then the researcher would likely have more than .80
power with a sample size of n,,,, given that the actual values of the
contextual metaparameters are likely less pessimistic than planned
for. As such, ny,y effectively serves as the insurance policy to guar-
antee statistical power.

In fact, we may think about this result even more generally. In the
above example, there was one predictor X and p = 5 covariates. But
any, or even all, of the covariates could have partial slope parameters
relating to the outcome Y that are of theoretical interest for the pur-
poses of sample size planning. In such a case, we can imagine all
such focal predictors rotating through the position of X while all
other predictors become pro tem covariates. This means that we

could ask a researcher for the SESOI v across all focal parameters
in the model, and a conservative metacollinearity threshold pc
expected to hold across all corresponding sets of contextual covari-
ates. We would thus expect n,,,, to provide at least © power for all
o-level focal parameter tests (under standard assumed conditions),
within a general linear model with any number of predictors, as
long as no test’s contextual metacollinearity exceeds the conserva-
tive researcher-specified level pc.

Power for Measured Variable Path Analysis Models

In the above section, we expanded to allow for any number of
exogenous variables; in this section, we do the same for endogenous
variables. This includes not just multivariate multiple regression
models, where the same exogenous variables serve as predictors
of each of multiple endogenous variables; here we extend the
power analysis principles and practice to the general measured var-
iable path analysis setting in which endogenous variables may be
dependent upon both exogenous variables and other endogenous
variables. Consider a generic such model in Figure 2, in which we
assume for simplicity that all variables (labeled P through V') are
continuous.'® Tn this model, variables P, Q, and R are exogenous,
while variables S, 7, U, and V are endogenous. To elaborate on the
latter, S =fs(P) (i.e., S is a linear function of only one direct input
variable, P), T=fr(P, Q), U=fu(R, S, T), and V=Ff(P, Q, S, U).
From the perspective of each endogenous variable, it is part of a
microsystem within the larger model that consists of one or more
predictors that may or may not covary, with their interrelations
being a model-implied function of all legitimate path traces from
one predictor to another (Wright, 1934). Said differently, for ¢
endogenous variables, the larger measured variable path model
can be thought of as a collection of g simple/multiple linear regres-
sion models spliced together. Indeed, in the early-to-mid-1900s,
path models’ parameters were often estimated in just such a parsed
manner, using ordinary least squares methods (see, e.g., Pedhazur,
1982); since the advent of ML estimation, however, all model
parameters are estimated concurrently as part of the model-fitting
process.

In terms of sample size planning for measured variable path analysis
models as a whole, the common SEM-based approaches as previously
described involve the following steps: (1) assign values to all param-
eters, focal and contextual, to define the population; (2) set the a level
for significance tests (e.g., .05) and the target power level &t (e.g., .80);
(3) estimate the n needed for testing each individual focal parameter by
simulation or population analysis methods; (4) choose the largest such
n needed across all focal parameters. Within this general process, Steps
(2) through (4) are straightforward; Step (1), however, as we have
argued previously, is essentially impossible with any degree of cer-
tainty. The broader implication here is that, because model fitting
and estimation are approached at the model level with ML, improperly
assumed parameter values in one location can (depending on the
model structure) have repercussions for sample size planning for
focal parameters elsewhere in the model.

Fortunately, for the purposes of sample size planning in the man-
ner advocated in this article, we may return to the classical

10Exogenous variables could also be dichotomous; for simplicity here,
and to make the standardized example more easily interpreted, we are assum-
ing all variables are continuous.
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Figure 2
Generic Measured Variable Path Model
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perspective in which we think of the measured variable path model
with g endogenous variables as being parsable into g separate linear
regression submodels. Now, in general, with ML estimation, these
submodels and the original (unparsed) model do not necessarily
yield the same ML results with respect to tests of parameters. This
is because the fit function optimization occurs across the space
spanned by all variables in a given analysis, whereas the submodels
require optimization across a space spanned by fewer variables than
the full model. However, the predictors in each of the ¢ submodels
can be considered locally exogenous, with their covariation being
a function of all legally traceable relations between them within
and beyond their submodel. As such, regardless of the specific val-
ues yielded by such tracing, the population covariation among these
locally exogenous predictors cannot be worse (from the perspective
of statistical power for testing ) than the previously derived pessi-
mum. Therefore, the conditional pessimum within each of the g sub-
models insulates against the other ¢ — 1 submodels, as long as the
larger unparsed model is correct. This model parsability (along
with some practical points of elaboration addressed below) is what
enables application of the sample size planning methods here to
these more general measured variable path analysis models.

Imagine in Figure 2, for example, that a researcher considered the
path from R to U to be focal. This path occurs within the submodel
for endogenous variable U, which would have related predictors R,
S, and 7, and is shown in the bottom left of Figure 3. Thus, variables
S and T constitute the pro tem context, with relevant contextual
parameters including (in a standardized metric) the correlation
between S and 7, both of their correlations with R, and both of
their partial slopes relating to U."" Also shown in Figure 3 are the
remaining submodels for endogenous variables S, 7, and V, for
which similar focal/contextual parameter examples could be pre-
sented. In fact, every possible focal parameter from the original
model in Figure 2 exists within a submodel in Figure 3, complete
with predictor and outcome and contextual variables as relevant
(i.e., none in the model for S, one in the model for 7, two in the
model for U, and three in the model for V). In each submodel,
one of the possible focal parameters is represented at the top of
the model with a thick, horizontal arrow.'?

Now that the theoretical model has been conceptually parsed into
its ¢ submodels, for the purposes of sample size planning, we may
draw upon the previous notion of collapsibility. Specifically, the sub-
models for endogenous variables U and V may have their contextual
aspects collapsed further, as shown in Figure 4 (along with submodels
for endogenous variables S and T'). In each case, an exemplar stan-
dardized focal parameter y and contextual metaparameters pc- and

Figure 3
Submodels From Parsing the Model in Figure 2
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Bc are shown (grayed out as appropriate for endogenous variables S
and 7). Within each of these submodels, we know from the previous
section of the article that for the SESOI y across all focal parameters,
and for a metacollinearity threshold p expected to hold across all cor-
responding sets of contextual covariates, there exists an n,,,, value that
provides at least T power for o-level tests of all focal parameters in that
submodel (under standard assumed conditions).

Based on the above, a researcher could therefore proceed in a
piecemeal manner, determining an np,, value for each submodel
and then planning the study based on the largest such value across
all submodels. However, in a measured variable path analysis
model, a researcher might proceed even more generally. For sample
size planning purposes, every structural focal parameter and its sub-
model context can be conceptually collapsed down to the same
generic proxy model (as seen in the identical structures within
Figure 4). This means that a researcher could go through the follow-
ing steps at the level of the entire model (which we will illustrate in a
tutorial example in the next section):

1. Choose the smallest (standardized) effect y of interest for
any focal structural path anywhere in the model.

2. Set the o level for the significance tests (e.g., .05) and the
target power level & (e.g., .80), and find the corresponding
noncentrality parameter (e.g., A~x7.849 for o=.05,
n=.80).

3. Choose and justify a worst-case value for the contextual
metacollinearity pc across all submodel contexts.

4. Insert the values of v, A, and p into Equation 8 and round up
to get Myax-

" And of course, as a reminder, the roles of predictor and contextual var-
iables could change within a submodel, depending how many of its parame-
ters are considered focal.

'2In Figure 3, the model with endogenous variable S in the top left corner
shows a grayed-out contextual variable because no additional predictor exists
in the original model in Figure 2. In the model for endogenous variable T in
the top right corner, the correlation between P and Q is grayed out as no
source of relation exists between P and Q in the original model in
Figure 2. These special cases do not limit the generalizability of the proposed
methods to come, but rather were chosen deliberately to illustrate the meth-
ods’ versatility.
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Figure 4
Collapsed Submodels From Parsing the Model in Figure 2
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As stated previously, given that this process in practice takes a
conservative worst-case scenario approach to setting pc, and that
Bcis automatically set at a corresponding pessimum, the researcher
would likely have more than the target level of power with a sample
size of nyax, given that the actual values of the contextual meta-
parameters are likely less pessimistic (e.g., the largest metacolli-
nearity across all the submodels is likely less than the upper limit
specified by the researchers). In fact—and this is the real punch
line here—under standard assumed conditions, n,,,x would be
expected to provide at least m-level power for a-level testing of
any structural parameter within any measured variable path
model (i.e., with any number of variables, and any relations
among them), as long as the test’s associated metacollinearity
does not exceed the conservative, researcher-specified level. The
above expectation, of course, follows from the derivation that is
based on asymptotic behavior; a demonstration of the behavior of
Nmax 1N practice, as well as some important practical caveats, fol-
lows in the next section.

Ilustrative Example

To illustrate how to obtain the ny,,, estimate when planning for
a measured variable path analysis, we use the context of the generic
model in Figure 2, with four structural paths being of primary focal
interest: yyp (i.e., P—> V), yro (e, Q= T), yyr (ie., T— U), and
Yvy (e., U— V).

Step 1: One could elicit standardized SESOIs for each of
these, say:

Yvp = 40, v = .30, yyr = -.30, and vy = .20, (9)

again assuming each value to be, as per the spirit of SESOls,
sufficiently conservative, reasonably justified, and practi-
cally important. In this case, however, only the smallest
SESOI must be formally articulated. In fact, its specific loca-
tion within the model need not even be designated, merely
that the SESOI anywhere is of absolute magnitude y. So,
imagine a researcher chooses Iyl = .20 as the (standardized)
SESOI for the entire model.

Step 2: Now suppose the researcher plans to conduct the focal
parameter statistical test at the o= .05 level and targeting

n=.80 power. The corresponding noncentrality parameter
for the 1df x* test may be looked up in an existing table
(e.g., Johnson et al., 1995) or computed using, for example,
the chi2ncp function in the gtx R package (Johnson,
2020). With either approach, for o= .05 and © = .80, the
noncentrality parameter A =~ 7.849.

Step 3: Next, a conservative metacollinearity level for the
model (specifically, the highest upper threshold across all
focal parameters’ submodel contexts) is selected. In this
example, assume the researcher sets an expected upper
bound to metacollinearity of pc=.70 (more information
on such values will be provided later in the article).

Step 4: Using Equation 8 and making standard assumptions of
conditional multivariate normality and independence of
observations, we can obtain:

7.849

1 =381.8169. (10
—In[1 — 0.2%(1 — 0.7%)] + (19)

Nmax =

Therefore, rounding n,,,, up to the next integer to ensure sufficient
power, the necessary sample size planned for this analysis would be
Nmax = 382. Thus, based on all that has been presented so far, under
standard assumed conditions, a sample size of 382 would be expected
to yield at least == .80 power to detect Iyl =.20 anywhere within
this model, as long as the associated metacollinearity does not exceed
Ipcl=.70.

Some Fine Print for the Case of Measured Variable Path
Analysis Models

The metacollinearity parameter p- upon which the proposed
methods are based relies, in part, on the bivariate relations between
a focal predictor X and each covariate (Cy, ..., C,,) as well as among
the covariates themselves. In the two-predictor and then general mul-
tiple regression cases addressed in Appendices A and B, these
bivariate relations are each only a function of themselves. As such,
the power and sample size for testing the focal parameter y, which
depends in part on the expected sampling behavior of p., more foun-
dationally depends on the expected sampling variability in those
exogenous variables’ bivariate relations. In sample size planning
for focal parameters within a measured variable path analysis
model, however, where a model with g endogenous variables is
treated herein as parsed into ¢ simple/multiple regression sub-
models, bivariate relations between X and each covariate and
among the covariates may have different model-implied origins:
some might have been bivariate relations in the original unparsed
model, but others might be a (multiplicative and/or additive) func-
tion of one or more directed and undirected relations from within
that original model."® Indeed, in Figure 2, consider the relation
Yvu (i.e., U— V) as focal, in which case variables P, Q, and S
become contextual covariates in the collapsed submodel upon
which sample size planning is based with the methods in this article.
In this example (and assuming a standardized model for simplicity),
the bivariate relation between P and S in the collapsed submodel is

13 For example, in the path model shown in Figure 2, the model-implied
total correlation between variables 7 and R is the sum of two products, involv-
ing four model parameters in all: Brpppr + Bropor-
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merely a function of Bgp in the original model. On the other hand, the
bivariate relation between U and P in the collapsed submodel is
implied in the original model to be a more complex function of
six free elements: BspBus+ BreBur+ pprBur. This means that
while the sampling behavior of the bivariate relation between P
and S would be expected to be largely the same in the original
model and any relevant submodels involving only P and S as the
contextual covariates, with a finite sample, the behavior for the
bivariate relation between U and P would be expected to have
some divergence between the collapsed submodel and the original
path model. Specifically, with a finite sample, one might expect
the sampling behavior of the assumed simple bivariate relation
between U and P to potentially underestimate the actual variability
implied and propagated from the sampling behavior of the bivariate
relations’ six constituent elements within the original uncollapsed
model. In short, this could translate into a power shortfall. Further
examination of this issue follows in the next section.

Monte Carlo Simulation Illustration

To get a practical sense of the potential cost associated with the
propagation issue described above, we conducted a modest simula-
tion using the measured variable path analysis model in Figure 2 for
purposes of illustration. Note that, given the mathematical deriva-
tions upon which the proposed methods rest, we did not intend
this article to be a simulation study per se, nor did we feel a large
study of that type, commonly crossing many conditions factorially,
would be necessary. Indeed, given all the points of conservatism
built into the methods proposed in this article, we expected the prop-
agation issue to amount to very little, if anything, in practice, with
whatever effects may exist likely being felt more for testing focal
parameters further “downstream” in the model (i.e., where bivariate
focal predictor and covariate relations are expected to be more com-
plex functions of original model parameters).

In this simulation illustration, the structure of the data-generating
model, which was the path model shown in Figure 2, was fixed
across all simulation conditions. The factors that were systematically
manipulated were: (a) designation of the focal parameter in the
model (10 different structural paths), (b) the (standardized) SESOI
for the focal parameter (three values), (c) the upper bound of the con-
textual metacollinearity p¢ (seven levels), and (d) the (standardized)
contextual parameter values (1,000 different sets), resulting in a
maximum of 10 x 3 x 7 x 1,000 = 210,000 different possible sce-
narios for assessing the empirical power with n,,,,. Within each per-
missible condition (i.e., where the combination of focal and
contextual parameters yielded a PD covariance matrix), 1,000 sam-
ple replications were randomly generated and used for testing the
focal parameter. The empirical power for each condition was calcu-
lated as the proportion of o-level statistically significant test results
across all converged replications.

To elaborate, each of the 10 direct paths in this model in turn served
as the focal parameter for hypothesis testing. The focal parameter y
was set to be .20, .30, and .40 in turn, and metacollinearity p¢ values
were examined ranging from .50 to .80 in increments of .05.
Contextual parameters were randomly generated from uniform distri-
butions (with the only exception being residual variances, which were
fixed deterministically based on path coefficients values in order to
yield unit variances for all variables). The simulation results for an
upper bound pc=.70 will be presented in more detail below.'*

As np,. only depends on pc and v (Equation 8), the corresponding
planned sample size n,,, can be determined to be 382, 169, and
94, respectively, for each standardized SESOI focal value of vy, for
an oo=.05 level test to provide m=.80 power (under standard
assumed conditions). These sample sizes will thus be used to assess
the empirical power through simulations across a wide range of ran-
domly varying contextual conditions. More specifically, for each
focal parameter and a chosen y value, 1,000 sets of contextual param-
eter values were randomly generated, thus defining 30,000 unique
population conditions in total given the upper bound p- = .70: 10 pos-
sible focal parameters x 3 y values x 1,000 contextual parameter
conditions. Of these, a total of 24,322 produced permissible values
and PD population covariance matrices, with the resulting actual pop-
ulation metacollinearity pc ranging from —.84 to .87 (i.e., it was
allowed to exceed, that is, be even worse than, the planned p¢ level
as resulting population parameter conditions dictated). Within each
of these unique permissible population model conditions, empirical
power for testing the focal parameter with n,,,,x was assessed across
1,000 replications of random data generation from that population
condition with the original model in Figure 2 fitted each time.
Empirical power was obtained by calculating the proportion of statisti-
cally significant (p <.05) test results from the convergent models
among the 1,000 replications; this value was derived for all 24,322
permissible population conditions. It is important to note that it is pos-
sible for an empirical power estimate to dip below = (in this case, .80)
for four reasons: (a) random Monte Carlo error, (b) finite sampling
behavior deviating from the asymptotics assumed in the mathematical
derivations upon which n,,,, was based, (c) selected values of pc
being further from the asymptotic worst-case scenario where Ipcl
approaches 1.00 (see Appendix A), and (d) randomly generated pop-
ulation conditions where the resulting metacollinearity was allowed to
be in excess of the chosen level (thus yielding no necessary expecta-
tion of sufficient power).

For reasons described below, simulation results specifically for the
case of pc = .70 are summarized in Table 3, which focus on two out-
comes for each condition: the percentage of relevant population con-
ditions with an empirical power of 0.80 or larger,"> and the first
percentile point (Py;) in the distribution of that condition’s empirical
power estimates (to accommodate Monte Carlo error). The latter, in
other words, is the empirical power value that is lower than 99% of
the other empirical power estimates for testing the same focal
parameter under different randomly drawn contextual parameter val-
ues. The results are summarized from three perspectives separately:
(a) all simulated population conditions (with permissible values and
a PD population covariance matrix), (b) population conditions in
which the model-implied metacollinearity p- does not exceed the cho-
sen upper bound of .70, and (c) population conditions in which the
multiple correlation between the focal predictor and the contextual

" Full results for pe ranging from 0.50 to 0.80 are available from the
authors upon request.

'3 This is analogous to the “assurance level” discussed by Du and Wang
(2016), which was defined as the probability of achieving or exceeding a tar-
get power level given the sample size. The difference here is that the param-
eter values in our simulation were not drawn from a posterior distribution to
form a posterior power distribution. The contextual parameter values were
drawn from predefined uniform distributions in order to cover as many pos-
sible scenarios as possible to assess the robustness of 7,,,,x under a wide range
of conditions.
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Table 3
Distribution of Empirical Power With n,,,..
All PD Ipcl <.70 [Py, .. ,1<0.70
Y Nimax Focal par. % > 0.80 Py, % > 0.80 Py, % > 0.80 Py,

0.2 382 Ysp 100.00% 0.966 100.00% 0.966 100.00% 0.966
Yrp 100.00% 0.970 100.00% 0.970 100.00% 0.970
Yro 100.00% 0.971 100.00% 0.971 100.00% 0.971
Yur 100.00% 0.949 100.00% 0.949 100.00% 0.954
Yus 100.00% 0.950 100.00% 0.950 100.00% 0.950
Yur 100.00% 0.937 100.00% 0.937 100.00% 0.945
Yvp 99.89% 0.858 100.00% 0.864 100.00% 0.865
Yvo 100.00% 0.960 100.00% 0.960 100.00% 0.961
Yvs 99.64% 0.834 99.64% 0.834 100.00% 0.856
Yvu 99.88% 0.881 99.88% 0.881 100.00% 0912

0.3 169 Ysp 100.00% 0.970 100.00% 0.970 100.00% 0.970
Yrp 100.00% 0.975 100.00% 0.975 100.00% 0.975
Yro 100.00% 0.975 100.00% 0.975 100.00% 0.975
Yur 100.00% 0.949 100.00% 0.949 100.00% 0.955
Yus 100.00% 0.948 100.00% 0.948 100.00% 0.948
Yur 100.00% 0.933 100.00% 0.933 100.00% 0.950
Yvp 100.00% 0.882 100.00% 0.884 100.00% 0.886
Yvo 100.00% 0.969 100.00% 0.969 100.00% 0.970
Yvs 99.40% 0.837 99.52% 0.845 100.00% 0.887
Yvu 99.36% 0.863 99.36% 0.863 100.00% 0916

04 94 Ysp 100.00% 0.975 100.00% 0.975 100.00% 0.975
Yrp 100.00% 0.977 100.00% 0.977 100.00% 0.977
Yro 100.00% 0.978 100.00% 0.978 100.00% 0.978
Yur 100.00% 0.952 100.00% 0.953 100.00% 0.960
Yus 100.00% 0.965 100.00% 0.965 100.00% 0.965
Yur 100.00% 0.928 100.00% 0.941 100.00% 0.947
Yvp 100.00% 0.874 100.00% 0.880 100.00% 0.895
Yvo 100.00% 0.966 100.00% 0.971 100.00% 0.972
Yvs 99.74% 0.859 99.74% 0.859 100.00% 0.889
Yvu 99.12% 0.820 99.11% 0.819 100.00% 0911

Note. Focal Par. = focal parameter; PD = positive definite; Py = first percentile.
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covariates (Py 1 ... ,) does not exceed the chosen upper bound for pcof
.70 (and thus neither does pc).

Results are both as expected and reassuring. To start, even allow-
ing metacollinearity pc to exceed the planned level of .70 (i.e., the
“all PD” columns), as some randomly generated parameter condi-
tions did, most scenarios still yield empirical power in excess of
0.80 in 100% of conditions; indeed, even the worst scenario had
more than 99% of the cases with empirical power exceeding .80.
Furthermore, all of the corresponding Py, values exceeded 0.80,
with the lowest being 0.820. Lowest performance, as expected,
was consistently associated with parameters involving V, that is,
parameters involving this ultimate downstream variable, whose con-
textual variable bivariate relations are compound functions of multi-
ple model parameters. To reiterate, however, performance was
generally outstanding, even with population parameter conditions
whose implied metacollinearity pc values were allowed to exceed
the planned level of .70.

Restricting cases only to those with metacollinearity pc at or below
.70 (i.e., the middle pair of columns in Table 3), power performance
stayed the same or improved slightly, as expected. Also interesting
from a practical standpoint is what happens when we filter by cases
whose population conditions have multicollinearity Py;  , at or
below .70. Recall that this serves as a generally more conservative
restriction than metacollinearity pc < .70, and this conservatism is
reflected in the performance in the final two columns of Table 3 as
every single condition had empirical power at or above .80. In other

words, if a researcher had set the target metacollinearity using an
expected worst-case level of multicollinearity of contextual covariates
with a predictor, power would be ensured in all cases.

To reiterate what was stated at the start of this section, this is by no
means intended to be an exhaustive simulation; however, we do
believe it nicely illustrates the viability of the proposed 7,,,, approach.
First, although only a single measured variable path analysis model
was utilized, it was designed to accommodate parameters in a wide
variety of structural and contextual locations. Focal parameter values
were chosen in the small to medium range (y from .20 to .40), with
Nmax Values from 94 to 382, and with contextual parameters spanning
the full permissible range. Perhaps the most challenging practical
issue is the selection of the metacollinearity level p¢; this was varied
from .50 to .80, finding that for the current illustration p values exam-
ined below .70 yielded power that occasionally dipped below .80, and
pc values examined exceeding .70 generally provided excessive
power. While additional power is not a bad thing from a statistical
standpoint, it can be unnecessarily costly in terms of sample size.
For the circumstances examined here, we found pc = .70 to be a sur-
prisingly robust choice for metacollinearity in terms of providing the
target level of power for parameters throughout the model, even under
scenarios in which the chosen level of metacollinearity is violated.
This means that a predictor X and the optimally predictive linear com-
posite C. of the contextual variables Cj, ..., C, share around half of
their variance (i.e., 0.70° = 0.49). And while we do not wish to
endorse pc=.70 as a universal metacollinearity recommendation,
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seeing the behavior of n,,,, under this and neighboring conditions, in a
structurally diverse measured variable path analysis model, appears to
offer some useful numerical grounding. Furthermore, these results
also suggest that, if a researcher preferred to conduct sample size plan-
ning from a multicollinearity rather than metacollinearity perspective,
setting pc based on a belief about the more conservative Px; .,
appears to ensure adequate power, as long as Py _, indeed does
not exceed the stated level set for pc.

Discussion

Planning quality research requires extensive a priori reflection
regarding, for example, sufficient sample size and statistical
power, the study’s potential for contribution to its field, the research
design, methods of sampling, variables to be included, the nature
and quality of those variables’ measurement, proper specification
of models, and expectations regarding the parameters within those
models. The current study has focused on sample size planning,
which is at the core of a priori power analysis, with particular atten-
tion to model parameters’ role within this process. To summarize,
the models analyzed in research endeavors include not just the
focal parameters that are directly tied to the primary research ques-
tions, but also the contextual parameters that surround them; sample
size planning has historically required a priori information from the
researcher about both. While the methodological literature offers
many guidelines and strategies for setting focal parameters for sam-
ple size planning, especially within the traditional Cohen frame-
work, setting values for the surrounding contextual parameters,
particularly for more complex models, is far more difficult. Quite
simply, as this article and others before it have argued, our models
typically differ from prior studies in too many ways to be able to
trust the values of their contextual parameters with any reasonable
certainty (if such values were even reported in those prior studies
at all). This means that when choosing such values, researchers
are routinely forced to fill the gaps in their contextual knowledge
with educated guesses, and maybe, however unintentionally, a bit
of wishful thinking. Unfortunately, by whatever means those con-
textual values are arrived upon, the cost of their inevitable inaccu-
racy can be a woefully underpowered and possibly completely
wasted research endeavor.

Thus, rather than relying on such tenuous contextual speculation
and hoping for the best, the methods offered in the current work
encourage planning for the worst. Toward that end, we have devel-
oped a simple, practical approach for conducting sample size plan-
ning for methods that fall within the scope of the measured
variable path analysis framework. This domain explicitly subsumes
a number of familiar analyses, including multiple linear regression
and its derivatives (e.g., independent samples ¢ test, analysis of var-
iance), and should straightforwardly extend to a variety of specific
measured variable modeling scenarios (e.g., SEM approaches to
conditional process modeling; Hayes & Preacher, 2013).

This approach to sample size planning, as we believe is worth reit-
erating, has been built upon both statistical and ideological founda-
tions. Statistically, and in reverse order from their appearance in the
article, we encountered the notion of parsability. If you page through
just about any applied journal nowadays, the models being presented
and analyzed are increasingly sophisticated. In the social and behav-
ioral sciences, and well beyond as well, we seldom ask questions that
are answered by the test of a single parameter, but instead tend to

focus on larger systems where research questions are addressed by
the interplay of many such parameters. Given these models’ com-
plexity, the case was made here that it can be useful to consider
them in parts. Doing so is not meant to claim that the whole func-
tions precisely as the sum of its parts, but rather that planning for
each of those parts—especially the weakest—can be a very useful
strategy when it comes to making sample size preparations for the
model as a whole.

In the measured variable path analysis models addressed here,
those parts are general linear regression submodels, each having a
single endogenous outcome and as many predictors as variables
leading directly into that outcome. These submodels can differ in
the number of predictors as well as the number of focal paths, seem-
ingly undermining parsing’s promise of simplification. But here we
may invoke the second statistical concept encountered in the article,
that of collapsibility: for each focal parameter within a submodel, its
submodel collapses into the predictor, the outcome, and a linear
composite of any and all remaining predictors to serve as a contex-
tual proxy covariate. To be clear, we don’t mean to imply that all
such collapsed submodels are the same; rather, from a planning per-
spective, if you can plan for the weakest such collapsed submodel,
then you should be prepared for the entire model.

Sample size planning for such a collapsed submodel still requires
inputs from the researcher. Our concern with parameter inputs, as
echoed throughout this article, is that prior knowledge is almost
always of questionable accuracy. And thus we invoked another
important notion, the pessimum. This is the worst-case context sur-
rounding a given effect size of interest, where that context depends
on the metacollinearity parameter (pc) as specified by the researcher,
as well as the metaslope for the composite covariate (8¢), which is
automatically assumed to be in the least favorable configuration.

Although the pessimum is derived mathematically and serves as
one of the three statistical pillars of this sample size planning
approach, it also directly embodies the ideological foundation
embraced here, that of planning for the worst. Imagine how different,
say, a grant proposal would be that explicitly adopted this perspec-
tive. Rather than fumbling through a narrative that is benign in its
fiction under the best of circumstances, a researcher could
instead—and with complete sincerity—include something as simple
as the following:

The proposed investigation will utilize a sample size of n = 382, which
(under standard assumed conditions) is expected to provide a minimum
of .80 power (using .05-level tests) to detect standardized X — Y direct
effects of absolute magnitude as small as .20 anywhere in the theoretical
model, when other concurrent predictors of a given endogenous variable
Y have metacollinearity with the given X variable of up to .70.'®

The proposed methods make possible such simplicity.

Although the focus of this current study has been primarily on
managing uncertainty in the most challenging area, the contextual
parameters, the proposed methods still rest on the ability of the
researcher to specify a meaningful value for the focal parameter
embedded within that context. By meaningful value, however, we
do not mean a true value. Attempts at accurate estimation of focal
parameters, as much methodological research has discussed,

'®The researcher would still need to defend the specified level of
metacollinearity.
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frequently leads to underpowered studies (Anderson, 2019;
Anderson et al., 2017; McShane & Bockenholt, 2016; Perugini
et al., 2014), and both frequentist and Bayesian approaches have
been offered for remediation and strategic conservativism in such
estimation and planning (e.g., Anderson & Maxwell, 2017;
Anderson et al, 2017; Du & Wang, 2016; McShane &
Bockenholt, 2016; Pek & Park, 2019; Perugini et al., 2014;
Spiegelhalter & Freedman, 1986). Rather, and importantly, with
regard to focal parameter specification, we have assumed an
SESOI perspective (e.g., Lakens, 2022; Lakens et al., 2018),
which requires the researcher to speculate as to what constitutes
“meaningful” for theoretical and applied stakeholders and then oper-
ationalize that speculation within the focal parameters themselves. In
subscribing to this perspective, anything smaller than the specified
SESOI is deemed too small to be of inferential interest, or at least
too small to commit the necessary resources toward such inference,
but this SESOI requires no less justification than other approaches to
focal parameter specification (albeit possibly using different criteria
for that justification). Irrespective of how one justifies their SESOI,
objectively and/or subjectively (for more details, see Lakens, 2022;
Lakens et al., 2018), the key contribution of the approach proposed
in the current article is this: if the true focal parameter is at least as
large as the SESOI justified by the researcher, n,,x ensures (under
standard distributional assumptions) at least the target level of
power for the statistical test of that parameter.

With regard to our proposed methods, we do note that in our sim-
ulation illustration, the empirical statistical power yielded by n,,.x Was
higher than the target power level (t = .80) in most cases, suggesting
it may still be able to accommodate some deviation in the focal param-
eter from its designated value. As such, this approach may still achieve
the target power even when the SESOI selected and justified is some-
what higher than actual minimum thresholds of practical interest and
importance. But to what extent our methods are robust under increas-
ing deviations from the assumed population value remains for future
investigation. Nevertheless, the conservatism inherent to 7,y is
expected to at least partially offset potential loss of power when the
conditions are less optimistic, whether by virtue of a smaller focal
parameter or a higher metacollinearity than specified.

Returning to dealing with uncertainty in the contextual parameters,
other approaches also exist. Cole et al. (2025), for example, recently
proposed the plausible values for secondary parameters approach,
where a plausible range for each nonfocal model parameter is explic-
itly defined. Researchers with solid prior knowledge, for instance,
may determine that one of the contextual paths is no lower than 0.1
and no higher than 0.5, that one of the residual covariances is no
less than 0.05 and no larger than 0.3, and so on, establishing lower
and upper bounds for each contextual parameter. Based on this infor-
mation, a full factorial Monte Carlo simulation is implemented by
examining every combination of these boundary values, generating
a collection of power estimates under varying population conditions,
which in turn can inform sample size planning. Of course, this
approach does rely on researchers providing reasonable upper and
lower bounds for parameters within potentially complex systems,
where the combinations of those bounds must themselves define fea-
sible populations (e.g., with PD covariance matrices). Furthermore, as
those systems become increasingly complex, the number of combina-
tions can become rather prohibitive. In the relatively modest model in
Figure 2, for example, and assuming a standardized model for sim-
plicity, for a single focal parameter, there are 12 contextual structural

and nonstructural parameters for which to specify lower and upper
bounds, leading to a sizeable 212 — 4,096 simulation conditions.
And there is no guarantee that the worst-case scenario, whether in a
simple or more complex model, will occur at the intersection of
bounds rather than somewhere in between.

As another option for dealing with uncertainty, a sequential
design could be used to help refine knowledge of focal and contex-
tual parameters. Although, as noted previously, a standalone exter-
nal pilot study has many potential limitations (see also Browne,
1995), an internal pilot study could be employed whereby research-
ers use parameter estimates from data collected in an initial pilot
phase to update the nuisance parameters and inform sample size
planning in subsequent phases. This approach could, however, intro-
duce endogenous bias in more complex models that involve multiple
focal parameters, given that each focal parameter also serves as a
contextual parameter in testing a different focal parameter (see,
e.g., Wittes & Brittain, 1990).

In the end, the methods we propose in this article resonate with
prior studies’ concerns about uncertainty in setting model parameters
for sample size planning, offering a framework guided by what we
believe to be appropriate conservatism regarding focal parameters
implicitly (through subscribing to an SESOI perspective) and contex-
tual parameters explicitly (through pessimistic metaparameters).
Certainly, more work (some relatively simple and some more com-
plex) remains to be done, beyond the scope of the foundations we
intended to lay in the current article. For example, although 7,
often suggests a sample size that could be considered “large,”
Table 2 shows that this is not always the case. Indeed, some of the
sample sizes shown could present challenges within SEM, including
biased estimates, model nonconvergence, inadmissible solutions, and
unstable parameter estimates and model fit indices, particularly when
unconstrained traditional ML estimation is used (Bentler & Yuan,
1999; Ulitzsch et al., 2023; Wolf et al., 2013). Therefore, other key
factors for sample size planning, including the stability and interpret-
ability of the model solution, desirable distributional properties of the
data, and an adequate estimation precision level (Pek et al., 2024; Wolf
et al., 2013), may need to be considered as well.

In addition, sample size planning methods were not explicitly
illustrated here for models in which the unstandardized parameter
values are particularly important, nor for testing parameters that
are explicit functions of other parameters (e.g., indirect and total
effects). Furthermore, we did not address models with categorical
outcomes, multiple groups, mean structures, latent variables, and
many other variations and extensions within and beyond the SEM
framework. We also presented these methods with the assumption
of complete data and standard distributional conditions (as is quite
customary in the methodological power analysis literature); under-
standing these methods’ performance and robustness under other
conditions, including extensions to more complex (e.g., multilevel)
data structures, would be both interesting and necessary.

Finally, having been a part of countless sample size planning dia-
logs ourselves, we are quite familiar with the retort, “But I can only
afford subjects.” Whatever number fills in the blank, it repre-
sents the reality of resource and budget constraints experienced all
too commonly by applied researchers. Indeed, such constraints are
often the primary cause of the haggling and sambaing to which
we have also borne frequent witness. To this, we offer three
responses. First, and admittedly least empathically, we start with a
reminder that the truths of the universe are unmoved by haggling
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and sambaing, however artful they may be. That is, the knobs one
twiddles in setting parameter values have no wires leading to the
population parameters themselves. This means that a genuinely ear-
nest attempt at sample size planning that yields a value for n that one
cannot afford should stop, or at least pause, a study from moving for-
ward. Otherwise, one is proceeding with an investigation that has an
often severely reduced probability of detecting the relations of key
theoretical interest: 0.70. 0.60, 0.50, or worse. Does one really
wish to conduct a study whose key conclusions are effectively the
toss of a coin?

Second, perhaps a more compassionate perspective is one not
framed as haggling or sambaing, but rather captured in another com-
mon response: “I only have ___ amount of money. What can I get
for it?” Here the researcher still presumably wishes to maintain a tar-
get level of power, but is inquiring as to the various corresponding
settings of the parameter knobs. For instance, we translate that ques-
tion as, “If n,,,, were limited to 200 subjects, to what values of the
focal parameter (y) and metacollinearity (pc) would that corre-
spond?” Assuming an o=.05 level test and a target power of
n=.80 (for which the noncentrality parameter is A = 7.849), this
is tantamount to articulating an isopower contour in which:

7.849
—In[1 —y2(1 — p2)]

Nmax = 200 = +1, an

which could be approximately satisfied by an infinite number of
combinations, including (y = .20, pc =.20) or (y = .45, pc = .90).
While perhaps informative, we do worry that this kind of
reverse-engineering will reverse us right back to the kind of negoti-
ations from which current sample size practices suffer, and which
Nmax Was aiming to help avoid. On the other hand, doing so could
also serve as a bit of a sensitivity analysis, providing reasonable
encouragement should the combinations of focal parameter and
metacollinearity values be in defensibly meaningful ranges.

Third, and transcending issues regarding the current methods,
other ways exist to maximize information on a fixed budget.
Planned missing data designs, for example, can allow for an
increased number of subjects overall by lowering the cost per indi-
vidual participant through strategically limiting the number of vari-
ables gathered from each subject (see, e.g., Feng & Hancock, 2021;
Rhemtulla & Hancock, 2016; Rhemtulla et al., 2016). On the other
hand, perhaps power does not even constitute the proper target; in
specific settings, for example, maybe one should be determining
sample size for the purpose of achieving a defensible level of preci-
sion in the estimation of the focal parameter (e.g., Kelley &
Maxwell, 2003; Lai & Kelley, 2011). How these issues, and those
already mentioned above within this section, can work hand in
hand with n,,x remains to be explored. And thus we consider the
current work to be a useful start, helping to ensure that researchers’
sample size planning is rooted in caution (through strategic pessi-
mism), integrity (through the formal inculcation of that pessimism
into ny,x to help avoid researchers’ motivated manipulations), and
practicality (in the simplicity of the methods we propose). And in uti-
lizing these methods, then, researchers are putting into action the
beliefs that (a) studies worth doing are worth erring on the side of
caution in planning, and that (b) admitting uncertainty in our prior
knowledge, and being willing to pay to ensure against its potentially
severe consequences, is a reasonable investment in a better and more
replicable science.
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Appendix A
Deriving the Conditional Pessimum

In this appendix, we derive the global minimum of the maximum likelihood (ML) fit function Fy; . We start with the proof that the power for
testing the focal parameter in multiple linear regression is minimized with perfect collinearity Ipl — 1.

Suppose we have the population regression model (with mean-centered variables'” to eliminate the need for a mean structure here, for sim-
plicity):

y=XI"+¢, (AD)

with population parameters denoted by @ = (I, 62)'. The predictors X contain both the focal predictor Xfoc, and p contextual predictors C,
X = (Xfocal | C). The covariance matrix of the predictors X is denoted as:

1 n_a | Pxx Pxc
COV(X) = nj(XX ) =P = |:(I)CX (I)CC . (AZ)

The coefficients I' can thus be partitioned into focal parameter y and peripheral parameters p:

r=[|p7. (A3)

We can also partition the parameters © into @ = (O, | O ipera) = V1B’ 07)-
Assuming normally distributed errors, the likelihood function is computed as:

s 1 — (i — x;I)?
. _ _ 2 i i
L(®;y, X) = P(y|0, X) = (2rno;) 26XP<—5 E T2 ) (A4)
and the corresponding log likelihood is computed as:
n n ) 1 ,
LLO;y, X) = —-In(2m) — S In(o,) — 5 [(y — XI)'(y — XI)]. (AS)
2 2 202

It is well known that the maximum likelihood estimation (MLE) estimator of © (i.e., @) can be obtained as follows:
T = XX)" Xy

(A6)
6, = n E (Y: X,F) .

The MLE estimator © is also asymptotically normally distributed, with asymptotic variance computed from the inverse of Fisher information:

-1
A}) : (A7)
0=6

n

U(®:y, X)| A>—1:(_1[w
> Mle=0

9 0?

The observed information can be organized as a block matrix:

10:y. X)lg_5
_[BZLL(G); y, X) ] | _[ 3 ILL®;y, X) ]
i e 0=0 dog or 0-6 (A8)
= |- - - - - - - | ___________ .
[ 8 ILL(®;y, X) ] | ’LL(O; y, X)
or 9 o2 P 3 o2 0o

'7 The proof of the conditional pessimum is derived more generally on mean-centered data, with standardized data being a special case. As shown later, con-
clusions regarding the conditional pessimum remain the same.
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What we care about for the problem at hand is the first block, because the standard error of Tis computed as the square root of its first

element:
1 [azLL((B; y. X) i|
0=0.

i| _ 1 [ 0 9 ( ! [yy —yXI' - I'X'y + F’X/XF])

Ao leg)  nlarar\ 2a
1o, (A9)
. ! [(YX) — X'y + 2X'XT'] = ;’X X
A 20§y y o—0l o
On the other hand, it can also be shown that the other two blocks contain only zeroes:
1] 8 ALL(®;y, X) 13 (X(y—XI)
n | o2 ar o_6l  nloc? o2 0B
1| X(@y-—-XI
QO
1 .o, P
SIX(y - XXX) X))
B @ (A10)
1 .
“[Xy - X'XX'X) Xy
_n
= 2
@)
1 4 !
~[Xy - IXy]
5 .
©)
Therefore, the information can be simplified as:
I &
-X'X
n
= 0
10y, X)lg_5=1| ) (A11)
0 1| 8*LL(O; y, X)
" 902" 0-0
and the asymptotic covariance matrix can thus be simplified as:
1 -1
-X'X
n
~2 0
10y, X)g_g) ' = ¢ : (A12)
-1
0 1| PLL®;y, X)
" a2 0=0
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The first block of the asymptotic covariance matrix can be further written as a partitioned matrix:
-1

1

~(X'X) | TX, !

1 ) = ( 2 |: /mcal ][Xfocal C])
5 no, L C

€
/ / -1
L |:X focaleocal X focalc i|
n&i C/Xfocal C/C
-1

1 ., 1
? (X focaleocal) Tai (X/focalc) (A] 3)

€

I o ! o
<) (C Xfocal) D) (C C)
no, no,

1o, |:(I)XX ‘I)XC]I

n—1 (I)CX (I)CC
~ _ -1 _ _ _17-1
_ nGg [ (Pyx — PP Pex) — D Py (Pec — Pex Py Prc) i|
n—1 — D Dy (DPyy — (I)xcq’Eé‘I’cx)q (®cc — ‘Dqu)§§q’xc)7l

The first block in this partitioned matrix is by definition a scalar, and thus can be further simplified as:

nai ((I) ) (I)_lq) )71 _ "82 % I/G%(
n—1 XX X ceex Tn—1 1 ‘I’xcq’,] Dy
- XX
NE NE
_ n&f 1/0%
a1 Dyc . o N 1 _1®cx
1 — —=[diag(®cc)] 2 [diag(Pce) PR cldiag(®cc)F[diag(®ec)] > —=
Vo vV Ox
_ no. y 1/0%
n—=1"1-Py [diag(fbcc)]%fbgé[diag(fbcc)]%ch (Al4)
_ng, 1/0%
- 1 . _1 . !
& 1 —Pxc ([dlag(‘l’cc)] 2@ cc[diag(Pcc)] 2) Pxc
ne, 1/02

X
n—1"1-=Pyc Pcc) 'Pxc
_ nﬁﬁ 1/c%
ST

where p%,. is the coefficient of determination for regressing the focal predictor X on contextual predictors C.

Therefore, the standard error for 7 is:'®
1 meejoy  _ oejoy (A15)
n(n— (1 —pxc) (n— D1 = pxc)

.. when p%. — 1, the standard error for testing ¥ — oo, and thus the corresponding statistical power approaches its global minimum. m
Next, we derive the theoretical lower bound of the statistical power for testing the focal parameter y under perfect collinearity P?{c — 1.
The population covariance matrix is defined based on a full (f) model:

L] or
(@) = [F’(I) r'er + \If]'

(A16)

'8 Again, this standard error formula still assumes mean-centered variables for generality, with standardized data being a special case. If standardized variables
are assumed here, the derivation of this equation would become more straightforward, but arriving at the same conclusion that when p%. — 1, the statistical
power approaches its global minimum. Note that although the standard error will be different depending on the scaling, the difference is only in the numerator
of the equation; the pessimum, however, is determined solely based on the denominator.
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The population parameter can be partitioned into the focal parameter y and peripheral contextual parameters: @¢ = (y, @;eﬁpheml ). We then
need to fit a reduced (r) model to the population, where the focal path vy is constrained to zero, @, = (y = 0, ®;eﬁpheml)/. The reduced model
implied covariance matrix can be expressed as:

@ el ] . (A17)

(O = [r;«pr [T, + W,
To obtain the parameter estimates for the reduced model, we need to find the parameter estimates @r that minimizes the fit function:
Fr=In 3] + (X, ) — In || — p. (A18)

For our current problem, we can consider the simple case with one focal predictor X and one contextual predictor C, further assuming stan-
dardized form from this point onward in deriving the theoretical power lower bound. Therefore, the population values of the model parameters

can be written as:
1
o[17)
p 1

/ (A19)
r=[y BJ,
v = Ye»
with the known constraint that:
'O+ W = > + B> + 2Byp + v, = 1. (A20)
The population covariance matrix is thus:
1 P Y+ Bp
(@) = P 1 B+vp . (A21)
THBp By VB 2By + v,
Correspondingly, the reduced model parameters are denoted as:
Ci r
(I)r = |: i|,
r Ca
A22
r=[0 b]. (A22)
lI'r =C3,
producing the reduced model implied covariance matrix:
c1r br
3O@)=|r o b . (A23)
br b brcy+cs
When p — 1 (or —1; the conclusion will be the same), the reduced model parameter estimates are the following:
=1
=1
T=p , (A24)
b=vp+ [2
G =1-vp"—p —2ypB
which minimizes the discrepancy between Z{®;) and Er(@,).
Therefore, under the condition Ipl — 1, the estimated reduced model parameters are theoretically the following:
~ 1
(I)r = |: P i|,
p 1
(A25)

I, =[0 y+B]
W, =1-7p" — B — 2ypB.
(Note, however, when p deviates increasingly from 1, the estimated model parameters will also deviate more from this theoretical result.) m
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To derive the theoretical lower bound of power for testing ¥, we follow the Satorra and Saris (1985) approach. The statistical power is min-
imized when the following target fit function is minimized:

Fo=1n 3] + (2" — In[S¢] — 3. (A26)

Let us substitute the population parameter values and theoretical parameter estimates into each of the terms within the target fit function:

1. The first term: In Igrl

_ 1 P (rp +Pp
In|%|=In p 1 +B 5
(op+PBp w+B (p+B+1—77p>— B> —2ypB (A27)
=In[(1 - p))[1 — B+ )1l
2. The second term: tr(Z¢3, b
- )
= o1 0
sl | P Z1+BP 4 2B + %" B+vp
' pPP—1  (A—p)[l =B+ —1+@+p)’
0 B+vp -1
L —14 (B +yp)’ —14 (B+vp)’
1 P
- 0
- 1 —p? p?—1
1 P Y+ Bp
S —1+ B0 + 2pyp’ +v7p* B+ vp (A28)
Efzr - P 1 [3 + P 2 ) 2 2
pP—1 A =pHL-=B+v)] —1+@+7vp)
L v+Bp B+v 1 o B+ yp 1
-1+ @B+7yp)’ -1+ @B +7yp)’
YB+y)pP* -1  y(p*—1)
_ —1+@+v) —1+@+v)°
0 1 0
LY —Yp 1
wEe3 ) = 3.
3. The third term: InlXd
1 P Y+ Bp
In|¥| =In| p 1 B+vp
(A29)

Y+Bp B+vp 1
=In[(1 — p»)[1 — B> — v* — 2Bypl].

Putting them together, we thus have the target fit function:

F, =In[(1 = pAI1 — B +vp)*1] +3 — In[(1 — pA)[1 — B> — v* — 2Bypl] - 3

- pHI1 — B+ vp)’] (A30)
(1 —p»[1 — B> —v2 — 2Byp]

2 2
Note that for ln% to be mathematically legitimate, p> cannot be exactly equal to 1.

To make sure this is mathematically permissible, let us denote p =1 — 8, where 4 is a sufficiently small positive value such that 0 <8 < 1.
[Note. The same results can be obtained for the case p <0. We can let p = —1 + 6, V a sufficiently small positive value §, 0 < § <1.]

(Appendices continue)
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The target fit function can thus be expressed as:
1= [B+v(1 - P
[1— B —y> = 2By(1 - 3)]
1= [B+7) -3
[1— (B> +v2 + 2BY) + 2By3]
_ gL B0+ 298B] +29°5 — 78
(1= (B+v)7 +2pv3]

2
v°3(2 — ) ]
:] 1 .
"[ HE TR T

r=

(A31)

Importantly, we are interested in the population condition that yields the lowest power given a fixed focal parameter y. That is to say, we
need to find the population value of contextual path parameter B that minimizes the target function F.. Therefore, we take the derivative with
respect to f3:

oF, _ [1— B+ + 2pyd] (3[1 Y82 — ) D
B [1— B+’ +2r8B1+2y28 — v \BL 1 —(B+7v)+2py8
_ [1— (B +v) + 23] 182 = 8)(=2 — 27 +219)
[1— B+ +2v8B1 + 2128 — &\ [1 — (B+7y) + 2Byd]° A%)
_ 1 <y28(2 —8)(—2B—2y+ 278))
(1= @+ +2v8Bl +2y28 — 28\ 1 —(B+v)° +2pyd
_ —27’82 -8B +v —19)
([1 = B+ 7)* + 2y8B] + 2¥28 — v28)[1 — (B+ 1) + 2By3]
To have ‘Z—g‘ = 0 given a sufficiently small 0 < & < 1, we need to set B + v — yd = 0. Therefore, we have the following result:
p=v6—-1). (A33)
.. when = —yp, F; is minimized. m
The theoretical lower bound of F; can thus be computed as:
i 2852 -3
Fr=Tn|1+ o2 —9) }
I—(¥@—1) +7) +2y@ - 1) v8
_m1+ﬁ§—m%+warmq
B 1 +728% — 228
A v (A34)

- I
- h——
o FEra 2y28]

1
=In| ——— .
! l—vz(l—pz)}

In summary, in this appendix, we have proved the following: when Ipl = 1 and B = — yp, the fit function F, is minimized, and thus the
statistical power for testing y is minimized:

1
lim Fr=In| ———|. A35
lpl—>1,8=—vp |:1 -y - Pz):| (A33)
Therefore, the theoretical n,,,y is,
A A

+1

ST (A3

nmax:—l
1n|:—2 2]
I—vy2(1—p?)

(Appendices continue)
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Appendix B
Equivalence of Uncollapsed and Collapsed Multiple Regression Models for Testing y

In this appendix, we prove the equivalence between the uncollapsed model and the collapsed model in terms of testing focal path vy.
We begin with the likelihood ratio test (LRT) under the uncollapsed model. The parameters (®) of the uncollapsed model are denoted as
follows:

1. The path coefficients are:  I' =y, By, Bo, ..., B, 1,
e path coefficients are: | 1" - [v. B1» B2 Byl

and particularly, the contextual path coefficients are: B = [By, B2, ..., Byl
. . . . Ixp
2. The covariance matrix for exogenous predictors X is:

Cxx
Cix C11
b = . o , (B1)
C X C pl .. C p
3. The error variance of outcome Y is .
The observed data are denoted as:
Y
Y X
Q =|x|=C| (B2)
(p+2)xn C .
G

Therefore, the model-implied covariance matrix under the uncollapsed model can be written in the following block matrix:

rer'+vy | re A
1x1 1x(p+1)
@)= | ———— | ——|=| o | (B3)
or | @ (pEDx1 (DX (p+D)
where:
A1 =T®I" + v,
= I'®,
Ix(p+1) B4)
c* =ar,
(p+Dx1
D=a.
Assuming multivariate normality and independence, the likelihood of @ given the observed data are:
t + |
L®; Q) =[] @n ™ det (@)1 exp[— fQ,E(G))’lQi]
- ’ (BS)

(p+2)n

; I
= Qn) 5 det [2(@)] exp[— > Ql-E((E))‘lQ,} :

Setting the focal parameter y = 0 and keeping the other parameters fixed, we will obtain the reduced (uncollapsed) model, whose model
parameters (0,) are correspondingly defined as the following:

1. The path coefficients are: I', =10, By, By, .-, B,,]

Ix(p+1)

and particularly, the contextual path coefficients are: B, = 8

. . . . 1x
2. The covariance matrix for exogenous predictors X is: ’

P =P (B6)
3. The error variance of outcome Y is y, = y.

(Appendices continue)
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Therefore, the model-implied covariance matrix under the reduced uncollapsed model can be written as the following block matrix:

or +y, | e,
@)= -~ L
DT, | @,
A, B, A, B, (B7)
_ Ix1 Ix(p+1) _ Ix1 Ix(p+1)
o C; D, - C; D ’
(p+Dx1  (p+Dx(p+1) (p+hx1  (p+Dx(p+1)
where:
A =0T, +y, =T®T +v,
1x1
B, =TI.\0,
Ix(p+1)
, (B3)
C. =0or,
(p+Dx1
D, =D=0.
(p+D)x(p+1)
Similarly, assuming multivariate normality and independence, the likelihood of @, given the observed data are:
= _pt2 _1 1 . 1
L(©; Q) = [ [0~ det [2:(®)] exp| — 5 Q%:(0)'Q;
= (BY)
_(pt2n 1 1 % —1
= 2m) T det [2.(O)] zexp[— 52 Q2(®) Q,-].
With Equations B5 and B9, the LRT for testing the focal parameter vy is thus defined as:
! s 1 , .
L0 Q) Qm~" det [2(0)] exp[ 52 QO Q,-]
0.:Q) oy _n 1 , _
LOQ o2 gz @) ZGXP[— 3> Q®) 1Q,-] (B10)
det [2(@)] ] 'S o5 (@] .
=l —= 2O 2.0 .
[ @] P22 UCO T -%@)7Q,
Using Theorem 8.2.1 (2) in Graybill (1983, p. 184), the determinant of X(®) and %(0) can be written as:
det [X(@)] = det [D]det [A — BD™'C*]
= det[D](A — BD~'C"),
(B11)
det [%,(0)] = det[D;]det[A, — B,D;'C,]
= det[D](A; — B,D'C)).
Therefore, the first term in Equation B10 can be computed as:
[det [3(0)] ]‘% _ [ det[DI(A —BD™'C") ]3_ [(A —BD'CY) ]2
det[X,(®)]] ~ |det[D]J(A, —B.D"'C,)|  |(A;—-BDIC))
[ qer +y-ree'er) |
| @T + vy, — T, @D '®I)
- (B12)

[ @er +y-ror) |
- | (M@, + vy, — T, ®I')

-
LV: v

(Appendices continue)
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24 HANCOCK AND FENG

Next we further simplify the second term in Equation B10. Using Theorem 8.2.1 (1) in Graybill (1983, p. 184) and Equation 1.36 in Noble

(1969, p. 25), the inverse of Z(0) and X(®) can be written as:

3(@) = (A-BD'CH”! —~(A-BD'C" 'BD"!
D !C*A-BD!C*)"' D!'+D!'C*A-BD'C*) 'BD! |
5.0 (A, —B.D;'C)”" ~(A; —B.D;'C,)”'B.D;"
' —D-'Ci(A; —BD-'C)”" D! 4+D-'Ci(A, — BD-'C) 'B,D;!

Therefore, the difference between X(@) and Z.(0) can be computed as the following:

-1 a_ | @M dp

where (I), (II), (III), and (IV) each represents the corresponding element in this block matrix:

M =A-BD'CH"' — (A, -BD;'C)!
B 1 1
~A-BD'C* A, -BD’!C

1 1

TIOr +y—Tol'  Ter. +y, — LI
1 1 1 1

(I = —(A—BD'C)™'BD™! 4+ (A, - B,D7'C,)"'B,D"

1 1
=—-—BD!' +—BD!

v Y

1 -1
=—-—(B-B)D

v

1

=——T®-T,®)P"!
v

S A
v

= —l[Y 0 ];
L) Ixp

() = -D'C*A-BD'C*)' +D;'C,(A, - B,D,'C,) "' =

(Appendices continue)
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av)=bp'+D"'C*A -BD™'C*)"'BD™! - D! - D'C,(A - B,D'C,)"'B,D!

1 1
=D '+D'C* (—)BD" -D; ' - D;‘Cr<—>B,D;1
v Ve

1 1
=D '4+D!C* <7>BD*' -D ' - D*‘Cr<f>BrD*1
\ v

D (C*B - C,B,)D!

I
N

D/ @®I'T® — &I T, ®,)D!
(B18)

O (@I'T® — OI'.T, D)

I
AN N SN N

and is not to be ¢
Il
N
s
N
1
™=
<

€= €l= €l—= ==

T'T-T.TI)
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Therefore, T1(@) — Z,(0)" ! is computed as:

0 —— 0
0 v

Ixp
O-%O " =Ty, BT = v(—i) G v G)YB : (B19)
O Gl ] 0
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26 HANCOCK AND FENG

Therefore, the second term in Equation B10 is simplified as:

1 ,
exp [— 52 QO - 2;(@)*)0[]

/ 1 1 1
=exp —%ZQ,— Y<—$) v ¥ <$)YB Qi

0 ——y 0
v Y;

1 , 1 1 1

—en X0 alla() () (e ||
| G (B20)
0 (—) By 0
\";

1 1 1 1 1 1 i

=exp)—5 [X,- (——) ——vY; +X,-<— Y+ CQ(—)B’Y X:(—)vﬁ} X
v v v v v C.

= exp ! |:X'y<— l) Y, — l\(Y-X- + X7 <l>72 +C; <l> B'vX; + X; <l>yBC‘ ] }

2 1 \V 1 \V 1“3 1 w i \P 1 1 W 1

1
= expy— ZTV Z [ XY —vYiXi + X12Y2 + C;B/'YX’ + X,'YBC,‘ ]}

! XY 4+ X2 423 (B.Coy X
= exp _2_\VZ |: ZYXIYI +Xl Y + ZJ:ZI (BJCIJ)YXI ] }

Piecing together Equations B12 and B20, Equation B10 can be simplified as the following:
L©; Q) [det [2(@))]]‘% [ IS o0 - ]
= exXp| —=< ; 2 () - Er (C) i
L©,Q " Gz @] 7322 03O 7 -%O70 ®21)

1 P
= BXP{_EZ |:_2YXiYi + X7 +2 ZI B CyX; ] }
=

Assuming multivariate normality and independence, the likelihood ratio for the collapsed model can be similarly computed (which can be
considered a special case of the uncollapsed model with p = 1):

L(C)(@(C). Q(C)) 1
; _ 2,2
P
Since we define the collapsed model with the known constraints: Co = > 7 %Cj, therefore we can establish the equivalence between

Equations B21 and B22:
L© (@(C); Q(C>)

1
90, Q) 5y Z [ —2vX:Y; + X7v* + 2(BcCayXi ] }

2y
1 p
= exp{ “3y Z [ —2¢X1Y + X3y + zj;(ﬁjc,«j)yx,- ] } (B23)

CLOO95Q9) L®;Q)

T LOO9Q9) T L(esQ)

This establishes that the LRT statistic for testing the focal parameter y is equivalent between the original uncollapsed model with p con-
textual predictors and the collapsed model with only one composite contextual covariate.
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